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Abstract. Exact travelling-wave solutions of the(2 + 1)-dimensional sine–Gordon equation
possessing a velocity smaller than the velocity of the linear waves in the correspondent model
system are obtained. The dependence of their dispersion relations and allowed areas for the
wave parameters on the wave amplitude are discussed. The obtained waves contain as particular
cases static structures consisting of elementary cells with zero topological charge. The self-
consistent parameters of one static structure are calculated. The obtained structures require
minima spatial system sizes for their existence. As an illustration the obtained results are
applied for a description of structures in spin systems with an anisotropy created by a magnetic
field or by a crystal anisotropy field.

1. Introduction

The sine–Gordon equation is one of the most famous nonlinear partial differential equations
because of its soliton solutions [1] and its wide application in describing different physical
systems, for example the local electrodynamics of the Josephson junctions or bounded vortex
states below the critical temperature for the Kosterlitz–Thouless phase transitions in spin
systems with an anisotropy, created by an external magnetic field or by a crystal anisotropy
field [2–5]. There are two kinds of sine–Gordon model systems: pure dispersive systems
and systems with dissipative losses. Various methods exist for obtaining exact analytical
expressions for travelling and standing waves in pure dispersive(1+1)-dimensional systems:
the inverse scattering transform [6], the Hirota method [7], Lamb’s ansatz [8–12] etc [13, 14].
The problem of obtaining exact analytical solutions for systems including dissipative losses
is more complex. Such a solution exists in the(1+ 1)-dimensional case [15], but the usual
way to take into account the above effects is the application of perturbation theory if the
effects are small [16, 17] or numerical investigation of the solutions of the model equation
if the effects are large [18, 19].

In this article we discuss the(2 + 1)-dimensional sine–Gordon equation without terms
corresponding to dissipative losses

∂2φ

∂y2
+ ∂2φ

∂z2
− ∂2φ

∂t2
= sinφ(y, z, t). (1)

There exists an approach for obtaining exact analytical solutions of equation (1) [20].
The approach is based on the Lamb’s ansatz [8] and the resulting solutions are travelling
waves of the kind

φ = 4 tan−1[Af (αy; k1)g(βz + δγ t; k2)] (2)
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wheref andg are elliptic Jacobi functions [21] whose generation equations are(
df

dy

)2

= a1f
4 + b1f

2 + c1 (3)(
dg

dξ

)2

= a2g
4 + b2g

2 + c2 (4)

whereξ = βz + δγ t andai , bi , ci , i = 1, 2, are parameters depending on the modulusk1

of the corresponding Jacobi elliptic function.δ = ±1 and the solution parametersα, β, γ ,
A, k1 andk2 are connected through the following three algebraic relations

α2b1 − (γ 2 − β2)b2 = 1 (5a)

α2a1 + (γ 2 − β2)A2c2 = 0 (5b)

α2A2c1 + (γ 2 − β2)a2 = 0 (5c)

and restricted by the inequalities

0 6 ki 6 1 i = 1, 2. (6)

The properties of the nonlinear waves (2) strongly depend on the ratio between their phase
velocity v and the phase velocityvl of the linear waves in the investigated system (if
for an example the lowTc Josephson junction is consideredvl is known as the velocity
of Swihart [22, 23]). Tachyonic (v/vl > 1) quasi-one-dimensional kink solutions of the
(2 + 1)-dimensional sine–Gordon equation are well known [24]. The tachyonic waves of
kind (2) contain as particular cases other well known one-dimensional waves—the plasma,
breather and fluxon waves [15]. Ifv/vl = 1 the possible waves of kind (2) have some
similarities with the surface waves [25]. The last class of waves (2) contains solutions
with velocity v < vl and some of the spatial properties of these waves are connected to the
functionf . If the functionf is a constant then the waves are reduced to the one-dimensional
kink solution of the sine–Gordon equation. If the functionf is not a constant the waves
require two spatial dimensions for their existance. Ifv = 0 the waves (2) are reduced
to two kinds of static distributions which contain as particular cases the one-dimensional
distribution of Ferrel and Prange [26] and consist of rectangular elementary cells. The
waves leading to static distributions with periodical behaviour ofφ on the boundaries of the
correspondent static distributions are discussed in [27]. The possible waves (2) leading to
static distributions withφ = 0 on the elementary cell boundaries will be discussed in this
paper.

The basis of the investigation are the twelve main elliptic Jacobi functions [21]. The
investigated waves are described in section 2. In section 3 the dispersion relations and the
allowed and forbidden areas for the wavenumbers and frequency are obtained. The influence
of the boundary conditions on the parameters of one static structure is investigated. As an
illustration the connection between the static structures and the bounded vortex states in
spin systems with an anisotropy are also discussed.

2. The waves and their parameters

Using table 1 which gives the connections between the coefficientsa, b and c in the
generating equations for the elliptic Jacobi functions and the elliptic modulusk, the following
waves of kind (2) with velocityv < vl can be obtained

φ1 = 4 tan−1[A cn(αy; k1)/cn(βz + δγ t; k2)] (7a)
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Table 1. Relations between the modules of the twelve main elliptic Jacobi functions and the
coefficientsa, b andc in their generation equations.

Elliptic function a b c

cn −k2 2k2 − 1 1− k2

sn k2 −1 − k2 1
dn −1 2− k2 k2 − 1
sn/cn 1− k2 2 − k2 1
cn/sn 1 2− k2 1 − k2

sn/dn −k2(1 − k2) 2k2 − 1 1
dn/sn 1 2k2 − 1 −k2(1 − k2)

cn/dn k2 −1 − k2 1
dn/cn 1 −1 − k2 k2

1/sn 1 −1 − k2 k2

1/cn 1− k2 2k2 − 1 −k2

1/dn k2 − 1 2− k2 −1

with the parameters

k2
1 = A2[α2(1 + A2)+ 1]/[α2(1 + A2)2] (7b)

k2
2 = [(β2 − γ 2)(1 + A2)+ A2]/[(β2 − γ 2)(1 + A2)2] (7c)

(β2 − γ 2)− α2 = (1 − A2)/(1 + A2). (7d)

The following particular case is possible for this wave

k1 = k2 = 1.

Then

φ1,1 = 4 tan−1[A cosh(βz + δγ t)/ cosh(αy)] (8a)

with parameters

α = [A2/(A2 + 1)]1/2 (8b)

γ = [β2 − 1/(A2 + 1)]1/2. (8c)

The next possible combination of elliptic Jacobi functions is

φ2 = 4 tan−1[A sn(αy; k1)sn(βz + δγ t; k2)/cn(βz + δγ t; k2)] (9a)

with parameters

k2
1 = A2[α2(1 − A2)+ 1]/[α2(1 − A2)] (9b)

k2
2 = 1 − A2[(β2 − γ 2)(1 − A2)− 1]/[(β2 − γ 2)(1 − A2)] (9c)

(β2 − γ 2)− α2 = 1/(1 + A2). (9d)

The possible particular case here is

k1 = 1 k2 = (1 − A4)1/2

and the corresponding wave is

φ2,1 = 4 tan−1[A tanh(αy)sn(βz + δγ t; k2)/cn(βz + δγ t; k2)] (10a)

where

α = A/(1 − A2) (10b)

γ = [β2 − 1/(1 − A2)2]1/2. (10c)
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The third wave is

φ3 = 4 tan−1[A sn(αy; k1)cn(βz + δγ t; k2)/sn(βz + δγ t; k2)]. (11a)

The parameters of the wave are

k2
1 = A2[α2(A2 − 1)− 1]/[α2(A2 − 1)] (11b)

k2
2 = [A2 + (β2 − γ 2)(A2 − 1)2)]/[(β2 − γ 2)A2(A2 − 1)] (11c)

β2 − γ 2 = α2A2 (11d)

and it possesses two special cases:
(1)

k1 = 0 k2 = 1

corresponding to

φ3,1 = 4 tan−1[A sin(αy)/ sinh(βz + δγ t)] (12a)

with

α = 1/[(A2 − 1)1/2] (12b)

γ = [β2 − A2/(A2 − 1)]1/2 (12c)

(2)

k1 = 1 k2 = (1 − 1/A4)1/4

corresponding to

φ3,2 = 4 tan−1[A tanh(αy)cn(βz + δγ t; k1)/sn(βz + βγ t; k2)] (13a)

with

α = A/(A2 − 1) (13b)

γ = [β2 − A4/(A2 − 1)2]1/2. (13c)

Another possibility is presented by the wave

φ4 = 4 tan−1[A sn(αy; k1)sn(βz + δγ t; k2)/cn(αy; k1)] (14a)

k2
1 = 1 − A2[α2(1 − A2)− 1]/[α2(1 − A2)] (14b)

k2
2 = A2[1 + (β2 − γ 2)(1 − A2)]/[β2 − γ 2)(1 − A2)] (14c)

α2 − (β2 − γ 2) = 1/(1 − A2). (14d)

The special case here is

k1 = (1 − 1/A4)1/2 k2 = 1

corresponding to

φ4,1 = 4 tan−1[A cn(αy; k1) tanh(βz + δγ t)/sn(αy; k1)] (15a)

with parameters

α = 1/(1 − A2) (15b)

γ = [β2 − A2/(A2 − 1)2]1/2. (15c)

The following possible wave is

φ5 = 4 tan−1{A sn(αy; k1)/[cn(αy; k1)sn(βz + δγ t; k2)]} (16a)

k2
1 = 1 − A2[1 + α2(A2 − 1)]/[α2(A2 − 1)] (16b)
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k2
2 = [A2 + (β2 − γ 2)(A2 − 1)]/[(β2 − γ 2)A2(A2 − 1)] (16c)

β2 − γ 2 = α2A2. (16d)

The possible special cases are:
(1)

k1 = 1 k2 = 0

corresponding to

φ5,1 = 4 tan−1[A sinh(αy)/ sin(βz + δγ t)] (17a)

with

α = [1/(1 − A2)]1/2 (17b)

γ = [β2 − A2/(1 − A2)]1/2 (17c)

(2)

k1 = (1 − A4)1/2 k2 = 1

then

φ5,2 = 4 tan−1[Asn(αy; k1) tanh(βz + δγ t)/cn(αy; k1)] (18a)

with parameters

α = 1/(A2 − 1) (18b)

γ = [β2 − A2/(A2 − 1)2]1/2. (18c)

One more complex wave is

φ6 = 4 tan−1[A[sn(αy; k1)sn(βz + δγ t; k2)]/[cn(αy; k1)cn(βz + δγ t; k2)] (19a)

k2
1 = 1 − A2[1 − α2(1 + A2)]/[α2(1 + A2)] (19b)

k2
2 = 1 − A2[1 − (β2 − γ 2)(A2 + 1)]/[(β2 − γ 2)(1 + A2)] (19c)

α2 + (β2 − γ 2) = 1/(1 + A2). (19d)

The possible special cases here are:
(1)

k1 = 0 k2 = (1 − A4)1/2

corresponding to

φ6,1 = 4 tan−1[A tan(αy)sn(βz + δγ t; k2)/cn(βz + δγ t; k2)] (20a)

with

α = 1/(A2 + 1) (20b)

γ = [β2 − 1/(A2 + 1)2]1/2 (20c)

(2)

k1 = (1 − A4)1/2 k2 = 0

corresponding to

φ6,2 = 4 tan−1[A sn(αy; k1) tan(βz + δγ t)/cn[αy; k1] (21a)

with

α = 1/(A2 + 1) (21b)
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γ = [β2 − A2/(A2 + 1)2]1/2. (21c)

The last wave is

φ7 = 4 tan−1[A(cn(αy; k1)sn(βz + δγ t; k2))/(sn(αy; k1)cn(βz + δγ t; k2))] (22a)

with parameters

k2
1 = [α2(A2 + 1)2 − A2]/[α2A2(A2 + 1)] (22b)

k2
2 = 1 − A2[1 − (β2 − γ 2)(1 + A2)]/[(β2 − γ 2)(A2 + 1)] (22c)

α2 = (β2 − γ 2)A2. (22d)

Three special cases are possible here:
(1)

k1 = 0 k2 = (1 − A4)1/2

then the wave is

φ7,1 = 4 tan−1[A cotan(αy)sn(βz + δγ t; k2)/cn(βz + δγ t; k2)] (23a)

with parameters

α = A/(A2 + 1) (23b)

γ = [β2 − 1/(A2 + 1)2]1/2. (23c)

(2)

k1 = k2 = 1.

The wave in this case is

φ7,2 = 4 tan−1[A sinh(βz + δγ t)/ sinh(αy)] (24a)

with parameters

α = A/(A2 + 1)1/2 (24b)

γ = [β2 − 1/(A2 + 1)]1/2. (24c)

(3)

k1 = (1 − 1/A4)1/2 k2 = 0.

The wave is

φ7,3 = 4 tan−1[A cn(αy; k1) tan(βz + δγ t)/sn(αy; k1)] (25a)

with parameters

α = A2/(A2 + 1) (25b)

γ = [β2 − A2/(A2 + 1)2]1/2. (25c)
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3. Allowed areas for the wave parameters and the influence of the boundary
conditions on the static structures

Because of the inequalities for the elliptic modulesk1 and k2 there exist allowed and
forbidden areas for the wavenumbersα, β wave frequencyγ and wave amplitudeA. The
wave amplitude determines the nonlinearity of the wave and with respect to this quantity
the following three possibilities exist for the discussed waves.

(1) A < 1. These waves can contain, as particular cases whenA is infinitesimal, the
correspondent solutions of the linear Klein–Gordon equation. An example for such a wave
is φ4.

(2) A > 1. Such waves are strongly nonlinear—they cannot be reduced to a linear
wave. An example is presented in [27].

(3) Waves for which a forbidden area for the amplitude does not exist as in the case of
the waveφ7.

Below the parameters and static structures, connected to the waveφ7, are mainly
discussed. This wave is chosen because it contains as a particular case one of the vortex
structures obtained by Borisovet al [28] and the single vortex structure, similar to this one,
discussed by Hudak [29]. The allowed areas for the wavenumber and wave frequency are

A2

(A2 + 1)2
6 α2 6 A2

A2 + 1
(26)

A2

(A2 + 1)2
6 β2 − γ 2 6 1

1 + A2
. (27)

Using the dispersion relation (22d) and inequalities (26) forα we obtain a second inequality
for β2 − γ 2

1

(1 + A2)2
6 β2 − γ 2 6 1

1 + A2
(28)

which leads to a dependence of the bottom boundary of the allowed amplitude area on the
wave amplitude. IfA < 1 the bottom boundary is given by (28) and ifA > 1 the bottom
boundary is given by (27). Equations (27) and (28) show that there exists a minimum
value of the wavenumberβ under which the waveφ7 does not exist. This minimum value
depends on the wave amplitude and its behaviour with amplitude changes is different in the
casesA < 1 andA > 1. The minimum value forβ is reached whenγ = 0, i.e. in the case
of the structures discussed below.

One possible application of the obtained solutions of the(2 + 0)-dimensional sine–
Gordon equation is the description of structures at temperatures below the critical
temperature for the Kosterlitz–Thouless phase transitions in spin systems with an anisotropy
magnetic or crystal field [28–33]. Let us have a spin system andψ(ȳ, z̄) is the angle of the
spin at the(ȳ, z̄) position with respect to some arbitrary axis. In this case the total energy
of the slowly varying plane configurations in the correspondent spin system when also an
anisotropy, created by an external magnetic field (p = 1) or by a crystal anisotropy field
(p = 2, 3, 4, 6) exist, has the following representation

E = J

∫ ∫
dȳ dz̄[∇ψ(y, z)]2 + J

∫ ∫
dȳ dz̄

1 − cos(pψ(ȳ, z̄))

pλ2
p

(29)

where (J/pλ2
p) is the anisotropy energy constant of the system. The spin configurations

which extremalize the energy are those which solve the(2 + 0)-dimensional sine–Gordon
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equation

∂2ψ

∂ȳ2
+ ∂2ψ

∂z̄2
= 1

pλ2
p

sin(pψ) (30)

and their vorticity can be calculated from

q = 1

2π

∮
γ ∗
(∇ψ · dl), dl = (dȳ, dz̄) (31)

where γ ∗ is an arbitrary loop in the(ȳ, z̄)-plane surrounding a point(ȳ0, z̄0) and anti-
clockwise oriented. Ifφ = pψ, ȳ = p1/2λpy and z̄ = p1/2λpz then (30) is reduced to the
static case of (1).

Figure 1. The structure connected to the solutionφ−
1,1 (γ = 0).

Let the system be treated as infinite, i.e. let the system sizes be much greater than
the characteristic size connected to the problem. Then the aperiodic structures described
above expressed by hyperbolic functions can exist. With respect to their vorticity they are
structures having non-zero vorticity as for exampleφ7,2(γ = 0), which hasq = 4 in the
casep = 1 or structures with zero vorticity as in the case ofφ1,1(γ = 0). The static
structure, connected to the solutionφ1,1 is presented in figure 1 and the structure connected
to φ7,2 is presented in figure 2.

In general the solutions (2) describe two kinds of double-periodic structures, mentioned
in the introduction. An example for the structures which have vanishingφ on the elementary
cell boundaries is the structure connected to the waveφ7,3 (figure 3). When the system is
infinite the parameters of the structures can have values which are within a continuum
interval. When the system must be treated as finite, and if some boundary conditions are
imposed, the structure parameters can have only discrete values. The combination between
this property and the existence of forbidden areas for the parameters leads to one among
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Figure 2. The static structure connected to the waveφ7,2.

the following possibilities (n andm are the number of the cells in the direction of the axes
0y and 0z).

(1) n = 0, m = 0. The system is small enough and all the values of the system
parameters are in the forbidden areas—then the corresponding structure cannot exist in a
system possessing such sizes. In other words some structures require for their existence a
system with sizes greater than minimal ones.

(2) n = 1, m = 1. The system sizes allow the existence of only a single cell.
(3) n = 1, m = 2, 3, 4, . . . . or n = 2, 3, 4, . . . , m = 1. This case is characteristic for

systems where one of the sizes is small and the another one is larger or much larger. In
such systems band structures can exist consisting of one cell in the direction of one of the
axes and of several cells in the direction of another axis.

(4) n = 2, 3, 4, . . . , m = 2, 3, 4, . . . . The sizes of the system are large enough and
allow the existence of lattice structures.

Let us have a system in the area between−a anda in the direction of the axis 0y and
between−b andb in the direction of the axis 0z. The imposition of boundary conditions
on the structures has the consequence that the structure parameters become self-consistent:
the spatial behaviour of the system in the direction of the axis 0y influences the spatial
behaviour in the direction of the axis 0z and vice versa. Below the boundary condition of
the kind

φ = 0 |y=−a,a φ = 0 |z=−b,b (32)

is discussed.
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Figure 3. The static structure connected to the waveφ7,3.

With respect to the structures connected withφ7 condition (32) leads to the equalities

∂φ

∂y

∣∣∣∣
z=−b,b

= 0
∂φ

∂z

∣∣∣∣
y=−a,a

= 0. (33)

The latter boundary conditions and equalities are satisfied on the boundaries of the
elementary cell of the structure and on the system boundaries. Let the loopγ ∗ coincide
with the boundaries of the elementary cell or with the boundaries of the system. Then the
total vorticity of the structures included in the elementary cell and the total vorticity of the
structures discussed below isq = 0.

The boundary conditions (32) lead to the following equations for the discrete self-
consistent system parameters

αnm = 2n+ 1

a
K(k1nm) (34)

βnm = 2m

b
K(k2nm) (35)

A2
nm = (2n+ 1)2b2

4m2a2

K2(k1nm)

K2(k2nm)
(36)

k2
1nm = α2

nm(A
2
nm + 1)2 − A2

nm

α2
nmA

2
nm(A

2
nm + 1)

(37)

k2
2nm = 1 − A2

nm[1 − β2
nm(1 + A2

nm)]

β2
nm(A

2
nm + 1)

(38)

whereK(ki), i = 1, 2, is the complete elliptic integral of first kind andn andm can have
values 1, 2, 3, . . . .

The inequalities for the elliptic modules give the following two cases of inequalities for
the parametersα andβ when the amplitudeA > 1.



Travelling waves in two-dimensional sine–Gordon systems 5205

Case A

αnm > 1
2 (39)

βnm > 1
2 (40)

α2
nm + β2

nm 6 1. (41)

From the inequality (41) inequalities for the numbersn andm follow if the system sizes
a andb are fixed and if the elliptic integral of the first kind obtains their minimum value
π/2:

1 6 n 6 1

2

(
2a

π

√
1 −m2

π2

b2
− 1

)
(42)

1 6 m 6 b

π

√
1 − (2n+ 1)

π2

4a2
. (43)

Case B

0< αnm 6 1
2 −

√
1
4 − β2

nm (44)

0< βnm 6 1
2 −

√
1
4 − α2

nm (45)

from which the inequalities for the numbersn andm are

1 6 n <
1

2

(
a

π
− 1

)
(46)

1 6 m <
b

2π
. (47)

If the amplitudeA is smaller than 1 in case A we have inequalities (39) and (41) and
in case B the inequalities areα < 1

2 and (45). Simple calculations for the minimum system
sizes required by the structures satisfying the inequalities of case B show that

(1) if the system sizes area < 3π , b < 2π the structures cannot exist;
(2) a single structure can exist ifa > 3π , b > 2π ;
(3) simple band structures can exist ifa > 3π , b > 4π (n = 1, m = 2), or when

a > 5π , b > 2π (n = 2, m = 1);
(4) the minimum sizes for the existence of a lattice structure (n = 2,m = 2) area > 5π ,

b > 4π .
Using the system of equations (34)–(38) the parameters of the self-consistent structures

satisfying the inequalities of case A can be calculated numerically. The results of these
calculations are presented in table 2.

4. Conclusions

The investigations show that the sine–Gordon waves and structures obtained by the approach
developed in [20] possess some general features. With respect to the static structures there
exist two possible kinds of structures exhibiting different behaviour ofφ on the boundaries
of the elementary cell of the structure. Two similar kinds of structures can also exist in
positive- and negative-temperature Poisson–Boltzmann systems [34, 35]. When appropriate
boundary conditions are applied the static structures require minimal system sizes for their
existence. This feature is connected to the modules of the Jacobi elliptic functions which
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Table 2. The self-consistent parameters for some cell structures connected to the solutionφ7.

n m a b α β A k2
1 k2

2

1 1 9.4639 6.2978 0.5111 0.5443 0.9391 0.1 0.3
1 1 9.6904 6.3892 0.5306 0.6103 0.8694 0.3 0.6
1 2 9.4639 12.5957 0.5111 0.5443 0.9391 0.1 0.3
1 3 9.4411 18.8707 0.5124 0.5277 0.9710 0.1 0.2
2 2 16.9988 13.0705 0.4743 0.6908 0.6866 0.1 0.8
2 3 15.7446 18.8935 0.5270 0.5270 1.0 0.2 0.2
3 2 25.7385 13.5769 0.4385 0.7596 0.5774 0.1 0.9
3 3 22.5715 19.0970 0.4934 0.6125 0.8055 0.05 0.6
3 4 22.3222 25.3208 0.4932 0.5858 0.8420 0.005 0.5
4 3 30.5950 19.6013 0.4680 0.6909 0.6774 0.05 0.8
4 4 28.2805 25.1356 0.5011 0.5104 0.9818 0.01 0.08
5 4 43.4638 28.0939 0.4001 0.8032 0.4981 0.025 0.94
5 5 34.5691 31.4214 0.5017 0.5129 0.9782 0.015 0.098

must have discrete values because of the boundary conditions. But the modules determine
the periods of the structure and thus the system must have enough large sizes in order
to satisfy the boundary conditions with the corresponding values of the structure periods.
With respect to the waves, there exist allowed and forbidden areas for the wavenumbers
and wave frequencies as for the waves withv < vl and for the waves withv > vl . The
mathematical reasons for the origin of such areas are the inequalities for the modules of the
Jacobi elliptic functions. The imposition of the stability requirement makes the situation
more complex. In general the area of stability is not the same as the allowed area for
the wave parameters. The investigation of the relation between the stability area and the
allowed areas for the wave parameters of the discussed waves as well as their applications for
the description of processes in large two-dimensional Josephson junctions, ferromagnetic
systems and dynamics of the crystal lattices is a subject of current research and will be
presented in future papers.
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